

Chemical Security Engagement Program

Managing a Chemistry Laboratory Safely and Securely

International Conference of Young Chemists Amman, Jordan 9 April 2012

Workshop Objectives

- Promote the safe and peaceful use of chemistry
- Appreciate the importance and benefits of Chemical Safety and Security (CSS)
 - To do top level work, you need top level CSS practices
- Encourage the creation of networks of people interested in CSS
 - Culture of Chemical Safety and Security

Workshop Overview

- Orientation to Chemical Safety and Security (CSS)
- Fundamentals of CSS
- Chemical Management
- Workshop Summary and Conclusions

Introductions

- Introduce yourself to 2 or 3 people you do not know
 - What is your name?
 - Where are you from?
 - What is your background?
 - Professor or student?
 - Area of expertise?

Orientation to Chemical Safety and Security

Overview: Orientation to Chemical Safety and Security

- Definitions of Chemical Safety and Security (CSS)
- Activity: Importance of CSS
- CSS Resources Introduction to CSP
- Conclusions

Chemical Safety and Security (CSS)

- Chemical Safety
 - Preventing and protecting against chemical laboratory accidents
- Chemical Security
 - Preventing and protecting against the intentional misuse of chemicals, people, or equipment for non-peaceful purposes

Our Goal: Promote the Safe and Peaceful use of Chemistry

- ▶ Form groups of 4–5 people per group
- Discuss with your group to answer the questions:
 - 1. What are CSS hazards?
 - 2. Can you think of any well-known examples of CSS incidents?
 - 3. Who and what are potentially affected?
 - 4. What are the potential consequences?
 - 5. How common are CSS incidents?
 - 6. Have incidents ever happened at your institution or that of someone you know?
- Write down your answers and be prepared to share with the whole group

Take about 15-20 min

- 1. What are CSS hazards?
- Hazard
 - Something that has the potential to do harm
 - Chemical
 - Physical
 - Biological
 - Radiological

- 2. Can you think of any well-known examples of CSS incidents?
- Sheharbano Sangji
- Los Angeles, USA 2008
 - Died from fire, t-BuLi
 - Inexperienced, proper training in question
 - UCLA Prof. Patrick Harran could face up to 4 ½ years in prison

- 2. Can you think of any well-known examples of CSS incidents?
- Aum Shinrikyo
- Japan 1994–1995
 - Recruited young university scientists
 - Produced sarin and other chemical weapons
 - Killed ~20 and injured over 4000

- 3. Who and What are potentially affected?
- Laboratory personnel
- Research
- Faculty, Administrators, and Institutions
 - Careers
 - Reputations
 - Facilities
- Community
 - People
 - Relationships with institutions
- Economy
- Environment

4. What are the potential consequences?

5. How common are CSS incidents?

6. Have incidents ever happened at your institution or that of someone you know?

- Conclusions for Activity
 - Chemical laboratories have many types of hazards
 - There are many examples of notorious CSS incidents
 - CSS incidents happen too often and can cause severe harm
- Improving CSS will benefit
 - Laboratory personnel
 - Research
 - Faculty, Administrators, and Institutions
 - · Careers, reputations, facilities
 - Community
 - Economy
 - Environment

CSS Resources

Organizations

Chemical Security Engagement Program (CSP)

www.csp-state.net

- About CSP
- Map of participating countries
- Past and upcoming events
- Photo galleries
- Discussion board
- Access resources
- Contact us

Fill out name, email, and desired username

 Will get an email to set your password

Conclusions: Orientation to Chemical Safety and Security

- Promote the safe and peaceful use of chemistry
- Benefits of improving Chemical Safety and Security (CSS) are far-reaching and significant
- After this workshop, you should be able to
 - Appreciate the importance and benefits of CSS
 - Help create networks of people interested in CSS

A culture of Chemical Safety and Security requires participation from everyone!

Workshop Overview

☑Orientation to Chemical Safety and Security (CSS)

- Fundamentals of CSS
 - Hazards
 - Controls
- Chemical Management
- Workshop Conclusions

Fundamentals of Chemical Safety and Security

Overview: Fundamentals of Chemical Safety and Security

- Laboratory Hazards
 - Chemical
 - Physical
 - Biological
 - Radiological
- Globally Harmonized System (GHS) Hazard Labels
- GHS Safety Data Sheets (SDS)
- Hierarchy of CSS Controls
- Conclusions

Laboratory Hazards

Chemical Hazards

- Toxic
 - Principles of Toxicity
 - Acute Toxins
 - Irritants, Corrosives, and Allergens
 - Organ-targeting
 - Carcinogens
- Flammable
- Reactive
- Explosive
- Chemicals of Concern (COCs)
- Physical Hazards
- Biological Hazards
- Radiological Hazards

Toxicity Depends on Dose

<u>Chemical</u>	Beneficial Dose	<u>Toxic Dose</u>
Aspirin	300-1000 mg	1000-30,000 mg
Vitamin A	500 units/d	50,000 units/d
Oxygen	20% in air	50-100% in air
Water	~1-2 L/day	~13 L

"All substances are poisons; there is none which is not a poison. The right dose differentiates a poison from a remedy."

- Paracelsus (1493-1541)

Toxicity is Measured by Lethality

- LD₅₀ (mg/kg)
 - "Lethal Dose 50%"

Dose-Response Curve

 Extremely wide range of toxicities between different substances

Agent LD_{50} (mg/kg)

Ethanol 7060

NaCl 3000

Formaldehyde 800

Caffeine 192

Nicotine 1

Dioxin 0.0001

Toxicity depends on a variety of factors

Routes of Exposure

Acute

Cause harm right away

Chronic

 May only see effects after extended exposure, or later in life after repeated exposures

Chemical Hazards:

Acute Toxins

- Includes highly toxic chemicals/poisons
 - Phosgene
 - Strychnine
- Includes common lab chemicals
 - Cyanides
 - Cl₂

Need to ensure safety and security when using and storing acute toxins

Chemical Hazards: Irritants, Allergens, and Corrosives

- Irritants
 - Effects are local and reversible

- Corrosives
 - Effects are local
 - Acids and bases
 - pH \leq 2 or \geq 12.5
 - React with and damage living tissue

- Allergens (and sensitizers)
 - Cause a reaction of the immune system

Gesundheits schädlich

NaOH

Chemical Hazards: Organ-Targeting

- Neurotoxins
 - Ethanol, Hg, CS₂, xylene, n-hexane
- Reproductive and Developmental Toxins
 - Harm fertility or reproductive ability
 - Harm fetus
- Other Organs
 - Liver, kidneys, lungs, etc.
 - Chlorinated or aromatic hydrocarbons, some metals

Chemical Hazards: Carcinogens

- Chronically Toxic
 - Vinyl chloride (liver cancer)
 - Asbestos (mesothelioma)
- Carcinogenicity of most chemicals is untested
 - Precautions taken may consider amount and frequency of use
- Treat known carcinogens as particularly hazardous

Chemical Hazards: Flammable

- Fuel: Solids, Liquid, or Gases
 - Compressed or liquefied gases are especially hazardous
- Oxidant
 - Oxygen in air
 - Other oxidants
 - Cl₂, HNO₃
- Ignition
 - Spark
 - Heat

- University of California, Santa Cruz, 2002
 - Lab fire, cause not determined
 - Lost equipment, notes, samples, etc.
 - Labs took 2 years to reopen

Chemical Hazards:

Reactive

Water-reactive

Pyrophoric materials

Incompatible Chemicals

 Combination leads to reactive or toxic hazards

 Concentrated oxidizing or reducing agents

Chemical Hazards: Explosive

- Initiated by
 - Heat
 - Light
 - $H_2 + Cl_2$
 - Mechanical shock
 - Nitro, peroxo
 - Certain catalysts
 - Acid/base catalyzed polymerization
- Dusts
- Peroxide-formers
 - Dialkyl ethers

- Texas Tech University Chemistry Lab, 2010
 - Synthesis of explosive compound
 - Scaled-up without precautions
 - One graduate student severely injured

Chemical Hazards: Chemicals of Concern (COCs)

- Dual-Use
 - Peaceful
 - Research, production
 - Not peaceful
 - Diversion, sabotage

Examples:

- 1. Dimethyl methyl phosphonate (DMMP)
 - Flame retardant
 - Nerve agent precursor

2. Thiodiglycol

- Dyes/inks, cosmetics, pharmaceuticals, polymers, coatings, etc.
- Mustard gas precursor

Chemical Hazards: Chemicals of Concern

- Presence or suspected presence of COCs in your laboratory could make you and your institution a target
 - Outsider Threat
 - Insider Threat

Example: Outsider Threat

- Chicago, USA, 2002
 - Joseph Konopka arrested in tunnels under the University of Illinois
 - Had NaCN on him and a stockpile of stolen chemicals including NaCN and KCN in subway
 - Sentenced to 13 years in prison for "possessing a chemical weapon" and other charges

http://articles.cnn.com/2002-03-12/us/chicago.cyanide_1_cyanide-in-chicago-subway-sodium-cyanide-chicago-police?_s=PM:US

Chemical Hazards: Chemicals of Concern

Example: Insider Threat

- Philadelphia, USA, 2007
 - Carol Anne Bond, microbiologist
 - Stole 10-chlorophenoxyarsine from work
 - Attempted to poison her husband's lover
 - Case is still in court

It is important to recognize the safety and security hazards posed by chemicals

Laboratory Hazards

☑ Chemical Hazards

- **☑** Toxic
 - ✓ Principles of Toxicity
 - Acute Toxins
 - ✓ Irritants, Corrosives, and Allergens
 - ✓ Organ-targeting
 - Carcinogens
- ☑ Flammable
- **☑** Reactive
- ☑ Chemicals of Concern (COCs)

Physical Hazards

- Compressed gases
- Cryogens, Pressure, and Temperature
- Electrical
- Mechanical and Other
- Biological Hazards
- Radiological Hazards

Physical Hazards: Compressed Gases

- Pressure
- Also chemical hazard depending on gas
 - Toxic
 - Reactive
 - Flammable
- Asphyxiation

Physical Hazards: Cryogens, Pressure, and Temperature

- Cryogens
 - Dry ice
 - Liquid nitrogen
 - Contact
 - Oxygen condensation
 - Asphyxiation
 - Pressure
- Pressure
 - High, above ~1 atm
 - Vacuum work
- Temperature

Physical Hazards:

Electrical

- Power outages
- Shock
- Fire
- Frayed cords
- Overloaded circuits
 - Daisy chains
- Static electricity

Physical Hazards: Mechanical and Other

Mechanical

- Noise
- Moving parts
 - Yale University, 2011
 - Student dies after getting hair caught in lathe (machine shop of chemistry lab)

Other

- Sharps
- Slips, trips, falls
- Housekeeping
 - Fire
 - Blocked exits

Laboratory Hazards

☑ Chemical Hazards

- **✓** Toxic
 - ✓ Principles of Toxicity
 - Acute Toxins
 - ✓ Irritants, Corrosives, and Allergens
 - Organ-targeting
 - Carcinogens
- ☑ Flammable
- **☑** Reactive
- ☑ Chemicals of Concern (COCs)

☑ Physical Hazards

- Cryogens, Pressure, and Temperature
- **☑** Electrical
- ☑ Mechanical and Other
- Biological Hazards
- Radiological Hazards

Laboratory Hazards: Biological

Pathogens

- Route of infection
 - Food or water borne
 - Salmonella
 - Blood borne
 - Hepatitis, HIV
 - Airborne
 - Tuberculosis
- Reason for exposure
 - Diagnostic work
 - Research work

Laboratory Hazards: Radiological

- Ionizing Radiation
 - X-rays
 - Gamma rays
 - Alpha particles
 - Beta particles
 - Neutrons
- Ionizing Radiation Sources
 - Radioactive isotopes
 - ³H, ¹⁴C, ³²P, ³⁵S, ¹³¹I
 - Instruments
 - Diffractometer
 - Electron microscope

Nonionizing Radiation

Ultraviolet

Infrared

· Primarily an eye hazard

Globally Harmonized System (GHS) Hazard Labels

Globally Harmonized System (GHS) and Other Hazard Labels

Environmental	Electricity	Hot Surface	Pinch Point
Biohazard	Radioactive	Bright Light	

GHS Safety Data Sheets (SDS)

- Comprehensive information for chemical management
- Use GHS hazard symbols
- Written and supplied by manufacturer
 - Online

16 sections, examples:

- 2. Hazards
 - Physical
 - Health
 - Environmental
 - Other
- 4. First aid measures
- 5. Firefighting
- 6. Handling and storage
- 7. Exposure controls/PPE

Drawbacks?

GHS Safety Data Sheets (SDS)

- Drawbacks
 - Not always current
 - Lack of toxicity information for most chemicals
 - Industry focus, not specific to laboratory scale
 - Sometimes inconsistent

SDS contains comprehensive information for chemical management in one place

Keep SDS for each chemical in your inventory

Module Overview: Fundamentals of Chemical Safety and Security

- ✓ Laboratory Hazards
 - Chemical
 - Physical
 - ☑ Biological
 - ☑ Radiological
- ☑ Globally Harmonized System (GHS) Hazard Labels
- ☑ GHS Safety Data Sheets (SDS)
- Hierarchy of CSS Controls
- Conclusions

Hierarchy of CSS Controls

- Purpose
 - Safety
 - Security
- Administrative
- Operational
- Engineering
- PPE

Administrative

Operational

Engineering

PPE

CSS Controls: Safety Purpose

- 1. Eliminate the source
- 2. Block the pathway
- 3. Protect the receiver

Chemical Safety Controls: Protect People from Chemicals

CSS Controls: Security Purpose

- 1. Eliminate the threat
- 2. Block the pathway
- 3. Protect the assets

Chemical Security Controls: Protect Chemicals (assets) from People

CSS Controls: Administrative

- Develop CSS policy
 - Communicate expectations regarding CSS
 - Prevent and mitigate CSS incidents
 - Build CSS into all operations
 - Comply with laws and regulations
 - Continually improve performance

- Implement CSS policy
 - Establish a CSS program
 - Assessments and reporting
 - Training
 - Appoint CSS personnel
 - Committee
 - CSS Officer
 - Provide resources and support
 - Incentives
 - Enforcement

CSS Controls: Operational

- StandardOperatingProcedure (SOP)
- Substitution
 - Use a less dangerous chemical
 - Alcohol thermometers instead of Hg

Citrus-based solvents instead of xylene

Peracetic acid instead of formaldehyde

CSS Controls: Operational

Scale Down

- Procure and use a smaller amount of the dangerous chemical
 - Smaller cost
 - Smaller hazard
 - Easier to store
 - Easier to dispose

6th International Symposium on Microscale Chemistry, Kuwait, 2011 http://www.6ismc2011.com/images/welcome_img.jpg

CSS Controls: Engineering

- Isolate or enclose the process, hazardous material, or worker
 - Barrier (blast shield)
 - Ventilation (laboratory hood)
- Create barriers between threat and target
 - Control access to institution
 - Campus
 - Building
 - Lock laboratories and chemicals (especially COCs) when not in use

Blocks the pathway from source to receiver, or threat to target

CSS Controls: Personal Protective

Equipment

- Last line of defense
- For emergency or spill response
 - Glasses or goggles
 - Gloves
 - Laboratory coats
 - Respirators
 - Footwear
 - Eyewash and emergency shower
- Must be appropriate for the specific hazards

- Hanover New Hampshire, USA, 1996
- Prof. Karen Wetterhahn, Dartmouth College
 - Spilled a few drops of dimethylmercury on latex glove
 - Died 6 months later

Conclusions: Fundamentals of Chemical Safety and Security

Recognizing laboratory hazards is an important first step in improving CSS

Appropriate CSS controls are based on the hazards

Workshop Overview

☑Orientation to Chemical Safety and Security (CSS)

✓ Fundamentals of CSS

- Chemical Management
- Workshop Summary and Conclusions

Chemical Management

Overview: Chemical Management

- Cradle to Grave
- Procurement
- Storage
- Inventory
- Activity: Standard Operating Procedures (SOPs)
- Waste
- Conclusions, Benefits of Best Practices

Cradle to Grave

Control and accountability of chemicals at all times, from procurement to disposal as waste

Procurement Storage

Disposal

Planning is Key

- Think "Cradle to Grave" before purchasing or accepting chemicals
 - What chemicals are needed?
 - How much are needed?
 - How/where will they be stored?
 - How will they be handled/used?
 - How will disposal take place?

"Extra" chemicals are not usually a good idea

Donated chemicals are not always "free"

- Activity: Chemical Storage
- General Guidelines
- Compressed Gas Cylinders
- Examples
- Access Control

Activity: Chemical Storage

- Find one or two partners
- Use the hazard and compatibility information to optimize chemical storage
- Rules:
 - 4 bottles per shelf maximum
 - Note that only one cabinet has a vent
 - Only one cabinet can be secured (padlock)

You may have to make some compromises or hard choices

- When finished, discuss the following and write comments in your workbook:
 - Was there one "perfect" way to store the chemicals?
 - Did you have to make compromises? What were they?
 - In making compromises, what were your main priorities?

Activity: Chemical Storage

Conclusions

- Can make chemical storage safer and more secure
- Safe and secure chemical storage requires
 - Space
 - Time
 - Training
 - Equipment
- Difficulties may be mitigated by operational controls
 - Substitution
 - Scale Down

Storage: General Guidelines

- Separate incompatible chemicals
 - Organize by groups
 - Alphabetize only within groups
- Separate flammables and explosives from ignition sources
 - flammable storage cabinets
- Large containers on bottom shelves
- All containers properly labeled and closed

Storage: General Guidelines

- Wipe-off outside of container before returning to storage area
- Use secondary containment
 - Label with compatibility group
- Fasten storage shelves to wall or floor
- Shelves should have a lip and/or rod

Storage: General Guidelines

Do Not Store Chemicals

- On top of cabinets
- On the floor
- In hoods
- In hallways
- With food
- Where there are wide variations in temperature, humidity, or sunlight

Storage: Compressed Gas Cylinders

- Store in well-ventilated area away from direct sun
- Keep from being knocked over
- Screw down cylinder caps
- Separate incompatible gases

Storage: Examples

Storage: Access Control

- Access limitations depend on the material or information
 - More control of access if COCs are present
- Lock areas, rooms, cabinets
 - Control of keys
- Label areas "Authorized Personnel Only"
 - Means of identifying authorized personnel
 - Challenge unfamiliar people in restricted areas
- Authorized personnel
 - Trusted, background check
 - Trained
 - Legitimate need

- Database of chemicals
 - Computer/web-based
 - Barcodes
 - ID, location, owner, hazards
- Control access to database
- Maintain with inspections
- Ensure control and accountability
 - No orphan chemicals

Benefits

- Saves time
- Improves research
- Improves safety
- Improves security
- Saves money
- Regulation compliance
- Earn recognition

Overview: Chemical Management

- ☑ Cradle to Grave
- ✓ Procurement
- ✓ Storage
- **☑**Inventory
- Activity: Standard Operating Procedures (SOPs)
- Waste
- Conclusions

Activity: Standard Operating

Procedures (SOPs)

- SOP: A set of steps for carrying out a laboratory task
- Scenario: You are a chemist in a Quality Control (QC) lab
- Goal: Develop an SOP for preparing a standard acid solution for titration
- Get in groups of 4–5 people per group

Buret photograph courtesy of Indigo® Instruments

- ▶ Refer to the SDS for H₂SO₄, and the partially completed SOP
- In your groups, discuss
 - Hazards
 - · Chemicals, reactions, and products
 - Equipment
 - Storage
 - Disposal
 - Security
 - Controls
 - Operational
 - Engineering
 - PPE
- Fill in the blanks to complete the SOP
 - Be prepared to discuss with the whole group

Hazards in this SOP			
Preparation of solutions			
Equipment	4		
Waste/disposal			
Security			

Controls?

- Operational
 - SOP
 - Substitution
 - Scale down
- Engineering
- PPE
 - Quantity dependent

Conclusions

- SOP is a set of steps for carrying out a laboratory task safely and securely
- Should be part of a formal training procedure
 - Update regularly
- Protects students/workers, faculty, administrators, chemicals/info

- Plan ahead
 - Minimize amount and hazards
- Separate during collection and storage
- Recycling and/or disposal
- Prevent orphans and unknowns

Conclusions: Chemical Management

- Key to chemical safety and security
- Involves all CSS controls
 - Administrative
 - Operational
 - Engineering
 - PPE
- Many issues addressed by planning ahead
- Best practices in chemical management and high quality research are positively correlated
- Opportunities for those willing to pioneer improvements

Workshop Summary

- ☑Orientation to Chemical Safety and Security (CSS)
- ✓ Fundamentals of CSS
- Workshop Summary and Conclusions

Workshop Conclusions

- Promote the safe and peaceful use of chemistry
- Appreciate the importance and benefits of Chemical Safety and Security (CSS)
 - To do top level work, you need top level CSS practices
- Encourage the creation of networks of people interested in CSS
 - Culture of Chemical Safety and Security

Closing Remarks

